LAS PROPIEDADES QUÍMICAS DE LOS ELEMENTOS QUÍMICOS
NUMERO ATÓMICO
El número atómico indica el número de protones en la corteza de un átomo. El número atómico es un concepto importante de la química y de la mecánica cuántica.El elemento y el lugar que éste ocupa en la tabla periódica derivan de este concepto. Cuando un átomo es generalmente eléctricamente neutro, el número atómico será igual al número de electrones del átomo que se pueden encontrar alrededor de la corteza. Estos electrones determinan principalmente el comportamiento químico de un átomo. Los átomos que tienen carga eléctrica se llaman iones. Los iones pueden tener un número de electrones más grande (cargados negativamente) o más pequeño (cargados positivamente) que el número atómico.
MASA ATÓMICA
La masa atómica es la masa de un átomo, más frecuentemente expresada en unidades de masa atómica unificada.1 La masa atómica puede ser considerada como la masa total de protones y neutrones (pues la masa de los electrones en el átomo es prácticamente despreciable) en un solo átomo (cuando el átomo no tiene movimiento). La masa atómica es algunas veces usada incorrectamente como un sinónimo de masa atómica relativa, masa atómica media y peso atómico; estos últimos difieren sutilmente de la masa atómica. La masa atómica está definida como la masa de un átomo, que sólo puede ser de un isótopo a la vez, y no es un promedio ponderado en las abundancias de los isótopos. En el caso de muchos elementos que tienen un isótopo dominante, la similitud/diferencia numérica real entre la masa atómica del isótopo más común y la masa atómica relativa o peso atómico estándar puede ser muy pequeña, tal que no afecta muchos cálculos bastos, pero tal error puede ser crítico cuando se consideran átomos individuales. Para elementos con más de un isótopo común, la diferencia puede llegar a ser de media unidad o más (por ejemplo, cloro). La masa atómica de un isótopo raro puede diferir de la masa atómica relativa o peso atómico estándar en varias unidades de masa.
ELECTRONEGATIVIDAD
La electronegatividad es la medida de la capacidad de un átomo para atraer a los electrones, cuando forma un enlace químico en una molécula. También debemos considerar la distribución de densidad electrónica alrededor de un átomo determinado frente a otros distintos, tanto en una especie molecular como en sistemas o especies no moleculares. El flúor es el elemento con más electronegatividad, el Francio es el elemento con menos electronegatividad.
La electronegatividad de un átomo determinado está afectada fundamentalmente por dos magnitudes: su masa atómica y la distancia promedio de los electrones de valencia con respecto al núcleo atómico. Esta propiedad se ha podido correlacionar con otras propiedades atómicas y moleculares. Fue Linus Pauling el investigador que propuso esta magnitud por primera vez en el año 1932, como un desarrollo más de su teoría del enlace de valencia. La electronegatividad no se puede medir experimentalmente de manera directa como, por ejemplo, la energía de ionización, pero se puede determinar de manera indirecta efectuando cálculos a partir de otras propiedades atómicas o moleculares.
DENSIDAD
La densidad de un elemento indica el número de unidades de masa del elemento que están presentes en cierto volumen de un medio. Tradicionalmente la densidad se expresa a través de la letra griega “ro” (escrita r). Dentro del sistema internacional de unidades (SI) la densidad se expresa en kilogramos por metro cúbico (kg/m3). La densidad de un elemento se expresa normalmente de forma gráfica con temperaturas y presiones del aire, porque ambas propiedades influyen en la densidad.
PUNTO DE FUSIÓN
El punto de fusión es la temperatura a la cual se encuentra el equilibrio de fases sólido-líquido, es decir, la materia pasa de estado sólido a estado líquido, se funde. Cabe destacar que el cambio de fase ocurre a temperatura constante. El punto de fusión es una propiedad intensiva.
En la mayoría de las sustancias, el punto de fusión y de congelación, son iguales. Pero esto no siempre es así: por ejemplo, el agar-agar se funde a 85 °C y se solidifica a partir de los 31 a 40 °C; este proceso se conoce como histéresis.
A diferencia del punto de ebullición, el punto de fusión de una sustancia es poco afectado por la presión y, por lo tanto, puede ser utilizado para caracterizar compuestos orgánicos y para comprobar su pureza.
El punto de fusión de una sustancia pura es siempre más alto y tiene una gama más pequeña de variación que el punto de fusión de una sustancia impura. Cuanto más impura sea, más bajo es el punto de fusión y más amplia es la gama de variación. Eventualmente, se alcanza un punto de fusión mínimo. El cociente de la mezcla que da lugar al punto de fusión posible más bajo se conoce como el punto eutéctico, temperatura correspondiente a cada átomo de la sustancia a la que se somete a fusión.
El punto de fusión de un compuesto puro, en muchos casos se da con una sola temperatura, ya que el intervalo de fusión puede ser muy pequeño (menor a 1 °C). En cambio, si hay impurezas, estas provocan que el punto de fusión disminuya y el intervalo de fusión se amplíe. Por ejemplo, el punto de fusión del ácido benzoico impuro podría ser:
- pf = 117°-120º
PUNTO DE EBULLICIÓN
La definición formal de punto de ebullición es aquella temperatura en la cual la presión de vapor del líquido iguala a la presión de vapor del medio en el que se encuentra.1 Coloquialmente, se dice que es la temperatura a la cual la materia cambia del estado líquido al estado gaseoso.
La temperatura de una sustancia o cuerpo depende de la energía cinética media de las moléculas. A temperaturas inferiores al punto de ebullición, solo una pequeña fracción de las moléculas en la superficie tiene energía suficiente para romper la tensión superficial y escapar. Este incremento de energía constituye un intercambio de calor que da lugar al aumento de la entropía del sistema (tendencia al desorden de las partículas que componen su cuerpo).
ISOTOPOS
El número atómico no determina el número de neutrones en una corteza atómica. Como resultado, el número de neutrones en un átomo puede variar. Como resultado, los átomos que tienen el mismo número atómico pueden diferir en su masa atómica. Átomos del mismo elemento que difieren en su masa atómica se llaman isótopos (isotopos). Principalmente con los átomos más pesados que tienen un mayor número, el número de neutrones en la corteza puede sobrepasar al número de protones.
Isótopos del mismo elemento se encuentran a menudo en la naturaleza alternativamente o mezclados.
Un ejemplo: el cloro tiene un número atómico de 17, lo que básicamente significa que todos los átomos de cloro contienen 17 protones en su corteza. Existen dos isótopos. Tres cuartas partes de los átomos de cloro que se encuentran en la naturaleza contienen 18 neutrones y un cuarto contienen 20 neutrones. Los números atómicos de estos isótopos son: 17 + 18 = 35 y 17 + 20 = 37. Los isótopos se escriben como sigue: 35Cl y 37Cl.
Cuando los isótopos se denotan de esta manera el número de protones y neutrones no tienen que ser mencionado por separado, porque el símbolo del cloro en la tabla periódica (Cl) está colocado en la posición número 17. Esto ya indica el número de protones, de forma que siempre se puede calcular el número de electrones fácilmente por medio del número másico.
Existe un gran número de isótopos que no son estables. Se desintegrarán por procesos de decaimiento radiactivo. Los isótopos que son radiactivos se llaman radioisótopos.
CONFIGURACION ELECTRONICA
En física y química, la configuración electrónica indica la manera en la cual los electrones se estructuran o se modifican en un átomo de acuerdo con el modelo de capas electrónicas, en el cuál las funciones de ondas del sistema se expresa como un átomo o atomicamente un producto de orbitales antisimetrizadas. La configuración electrónica es importante porque determina las propiedades de combinación química de los átomos y por tanto su posición en la tabla periódica.
ENERGIA DE IONIZACION
.
Siendo los átomos en estado gaseoso de un determinado elemento químico; , la energía de ionización y un electrón.
Esta energía corresponde a la primera ionización. El segundo potencial de ionización representa la energía precisa para sustraer el segundo electrón; este segundo potencial de ionización es siempre mayor que el primero, pues el volumen de un ion positivo es menor que el del átomo y la fuerza electrostática atractiva que soporta este segundo electrón es mayor en el ion positivo que en el átomo, ya que se conserva la misma carga nuclear.
El potencial o energía de ionización se expresa en electronvoltios, julios o en kilojulios por mol (kJ/mol).
1 eV = 1,6 × 10-19 C × 1 V = 1,6 × 10-19 J
Sin embargo, el aumento no es continuo, pues en el caso del berilio se obtienen valores más altos que lo que podía esperarse por comparación con los otros elementos del mismo periodo. Este aumento se debe a la estabilidad que presentan las configuraciones s2 y s2 p3, respectivamente.
La energía de ionización más elevada corresponde a los gases nobles, ya que su configuración electrónica es la más estable, y por tanto habrá que proporcionar más energía para arrancar los electrones.
En el caso de los cationes, la ausencia de uno o varios electrones disminuye la fuerza eléctrica de repulsión mutua entre los electrones restantes, provocando el acercamiento de los mismos entre sí y al núcleo positivo del átomo del que resulta un radio iónico menor que el atómico.
PROPIEDADES QUÍMICAS DEL Cl (CLORO)
Elemento químico, símbolo Cl, de número atómico 17 y peso atómico 35.453. El cloro existe como un gas amarillo-verdoso a temperaturas y presiones ordinarias. Es el segundo en reactividad entre los halógenos, sólo después del flúor, y de aquí que se encuentre libre en la naturaleza sólo a las temperaturas elevadas de los gases volcánicos. Se estima que 0.045% de la corteza terrestre es cloro. Se combina con metales, no metales y materiales orgánicos para formar cientos de compuestos.
Propiedades: El cloro presente en la naturaleza se forma de los isótopos estables de masa 35 y 37; se han preparado artificialmente isótopos radiactivos. El gas diatómico tiene un peso molecular de 70.906. El punto de ebullición del cloro líquido (de color amarillo-oro) es –34.05ºC a 760 mm de Hg (101.325 kilopascales) y el punto de fusión del cloro sólido es –100.98ºC. La temperatura crítica es de 144ºC; la presión crítica es 76.1 atm (7.71 megapascales); el volumen crítico es de 1.745 ml/g, y la densidad en el punto crítico es de 0.573 g/ml. Las propiedades termodinámicas incluyen el calor de sublimación, que es de 7370 (+-) 10 cal/mol a OK; el calor de vaporización , de 4878 (+-) 4 cal/mol; a –34.05ºC; el calor de fusión, de 1531 cal/mol; la capacidad calorífica, de 7.99 cal/mol a 1 atm (101.325 kilopascales) y 0ºC, y 8.2 a 100ºC.
El cloro es uno de los cuatro elementos químicos estrechamente relacionados que han sido llamados halógenos. El flúor es el más activo químicamente; el yodo y el bromo son menos activos. El cloro reemplaza al yodo y al bromo de sus sales. Interviene en reacciones de sustitución o de adición tanto con materiales orgánicos como inorgánicos. El cloro seco es algo inerte, pero húmedo se combina directamente con la mayor parte de los elementos.
Fabricación: El primer proceso electrolítico para la producción de cloro fue patentado en 1851 por Charles Watt en Gran Bretaña. En 1868, Henry Deacon produjo cloro a partir de ácido clorhídrico y oxígeno a 400ºC (750ºF), con cloruro de cobre impregnado en piedra pómez como catalizador. Las celdas electrolíticas modernas pueden clasificarse casi siempre como pertenecientes al tipo de diafragma y de mercurio. Ambas producen sustancias cáusticas (NaOH o KOH), cloro e hidrógeno. La política económica de la industria del cloro y de los álcalis incluye principalmente la mercadotecnia equilibrada o el uso interno del cáustico y del cloro en las proporciones en las que se obtienen mediante el proceso de la celda electrolítica.
Comentarios
Publicar un comentario